skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Xingyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To address the challenge of short-term object pose tracking in dynamic environments with monocular RGB input, we introduce a large-scale synthetic dataset Omni-Pose6D, crafted to mirror the diversity of real-world conditions. We additionally present a benchmarking framework for a comprehensive comparison of pose tracking algorithms. We propose a pipeline featuring an uncertainty-aware keypoint refinement network, employing probabilistic modeling to refine pose estimation. Comparative evaluations demonstrate that our approach achieves performance superior to existing baselines on real datasets, underscoring the effectiveness of our synthetic dataset and refinement technique in enhancing tracking precision in dynamic contexts. Our contributions set a new precedent for the development and assessment of object pose tracking methodologies in complex scenes. 
    more » « less
    Free, publicly-accessible full text available October 25, 2026
  2. Free, publicly-accessible full text available June 11, 2026
  3. Free, publicly-accessible full text available November 4, 2025
  4. Synchronization of transaction pools (mempools) has shown potential for improving the performance and block propagation delay of state-of-the-art blockchains. Indeed, various heuristics have been proposed in the literature to incorporate early exchanges of unconfirmed transactions into the block propagation protocol. In this work, we take a different approach, maintaining transaction synchronization externally (and independently) of the block propagation channel. In the process, we formalize the synchronization problem within a graph theoretic framework and introduce a novel algorithm (SREP - Set Reconciliation-Enhanced Propagation) with quantifiable guarantees. We analyze the algorithm’s performance for various realistic network topologies, and show that it converges on static connected graphs in a time bounded by the diameter of the graph. In graphs with dynamic edges, SREP converges in an expected time that is linear in the number of nodes. We confirm our analytical findings through extensive simulations that include comparisons with MempoolSync, a recent approach from the literature. Our simulations show that SREP incurs reasonable bandwidth overhead and scales gracefully with the size of the network (unlike MempoolSync). 
    more » « less
  5. Abstract In this work, we applied a multi‐information source modeling technique to solve a multi‐objective Bayesian optimization problem involving the simultaneous minimization of cost and maximization of growth for serum‐free C2C12 cells using a hyper‐volume improvement acquisition function. In sequential batches of custom media experiments designed using our Bayesian criteria, collected using multiple assays targeting different cellular growth dynamics, the algorithm learned to identify the trade‐off relationship between long‐term growth and cost. We were able to identify several media with more growth of C2C12 cells than the control, as well as a medium with 23% more growth at only 62.5% of the cost of the control. These algorithmically generated media also maintained growth far past the study period, indicating the modeling approach approximates the cell growth well from an extremely limited data set. 
    more » « less
  6. Abstract Systemic inequity in biometrics systems based on racial and gender disparities has received a lot of attention recently. These disparities have been explored in existing biometrics systems such as facial biometrics (identifying individuals based on facial attributes). However, such ethical issues remain largely unexplored in voice biometric systems that are very popular and extensively used globally. Using a corpus of non-speech voice records featuring a diverse group of 300 speakers by race (75 each from White, Black, Asian, and Latinx subgroups) and gender (150 each from female and male subgroups), we explore and reveal that racial subgroup has a similar voice characteristic and gender subgroup has a significant different voice characteristic. Moreover, non-negligible racial and gender disparities exist in speaker identification accuracy by analyzing the performance of one commercial product and five research products. The average accuracy for Latinxs can be 12% lower than Whites (p < 0.05, 95% CI 1.58%, 14.15%) and can be significantly higher for female speakers than males (3.67% higher, p < 0.05, 95% CI 1.23%, 11.57%). We further discover that racial disparities primarily result from the neural network-based feature extraction within the voice biometric product and gender disparities primarily due to both voice inherent characteristic difference and neural network-based feature extraction. Finally, we point out strategies (e.g., feature extraction optimization) to incorporate fairness and inclusive consideration in biometrics technology. 
    more » « less
  7. As the drone becomes widespread in numerous crucial applications with many powerful functionalities (e.g., reconnaissance and mechanical trigger), there are increasing cases related to misused drones for unethical even criminal activities. Therefore, it is of paramount importance to identify these malicious drones and track their origins using digital forensics. Traditional drone identification techniques for forensics (e.g., RF communication, ID landmarks using a camera, etc.) require high compliance of drones. However, malicious drones will not cooperate or even spoof these identification techniques. Therefore, we present an exploration for a reliable and passive identification approach based on unique hardware traits in drones directly (e.g., analogous to the fingerprint and iris in humans) for forensics purposes. Specifically, we investigate and model the behavior of the parasitic electronic elements under RF interrogation, a particular passive parasitic response modulated by an electronic system on drones, which is distinctive and unlikely to counterfeit. Based on this theory, we design and implement DroneTrace, an end-to-end reliable and passive identification system toward digital drone forensics. DroneTrace comprises a cost-effective millimeter-wave (mmWave) probe, a software framework to extract and process parasitic responses, and a customized deep neural network (DNN)-based algorithm to analyze and identify drones. We evaluate the performance of DroneTrace with 36 commodity drones. Results show that DroneTrace can identify drones with the accuracy of over 99% and an equal error rate (EER) of 0.009, under a 0.1-second sensing time budget. Moreover, we test the reliability, robustness, and performance variation under a set of real-world circumstances, where DroneTrace maintains accuracy of over 98%. DroneTrace is resilient to various attacks and maintains functionality. At its best, DroneTrace has the capacity to identify individual drones at the scale of 104 with less than 5% error. 
    more » « less